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Equations of motion in linearised gravity: I Uniform 
acceleration 

P A Hogan and Mari Imaeda 
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, 
Dublin 4, Ireland 

Received 1 August 1978 

Abstract. We describe a straightforward approach to studying the motion of the sources of 
some Robinson-Trautman gravitational fields in linearised gravity. It involves expanding 
the Robinson-Trautman line-element about Minkowskian space-time in powers of a small 
parameter (the ‘mass’ of the source). We solve the linearised field equations in Vacuo by first 
specifying the source world-line in the background Minkowskian space-time. Functions of 
integration are determined by the requirement that terms be excluded from the field 
(Riemann tensor) of the particle which are singular along null-rays emanating into the 
future from events on the source world-line in the background space-time. As an example 
we take the world-line to be the history of a uniformly accelerated particle. We show that 
our solution agrees with the exact solution of Levi-Civita to this problem, in the linear 
approximation. 

1. Introduction 

There are obvious similarities between the Robinson-Trautman (1962) solutions of the 
Einstein and Einstein-Maxwell vacuum field equations and the well-known Lienard- 
Wiechert solutions of Maxwell’s vacuum field equations. Point-like sources of the 
former may therefore be expected to exhibit, under varying circumstances, geodesic 
motion, uniform acceleration, run-away motion, etc, in some well-defined technical 
sense. 

The initial study of the possible motions of point-like sources of the Robinson- 
Trautman fields was carried out by Newman and Posadas (1969). Their approach, 
which involved expanding a key function in spherical harmonics, revealed no accelera- 
tion for an uncharged source in their first approximation. Nevertheless, there exists an 
exact solution of the vacuum Einstein field equations, discovered by Levi-Civita (1918) 
(for the recent history of this solution see Robinson and Robinson 1972), which is a 
member of the Robinson-Trautman family and has been interpreted by Kinnersley and 
Walker (1970) as representing the gravitational field of a uniformly accelerated point 
source. One would therefore expect to be able to identify such a solution in a linear or 
first approximation. This has been done by Robinson and Robinson (1972) using a 
method which emphasises the linearised field (Riemann tensor) of the particle rather 
than the linearised potentials (metric tensor components). Aside from the complexity 
of this approach, it is not clear how one might use it to study alternative types of motion 
in the linear approximation. 
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1052 P A  Hogan and M Imaeda 

More recently, the concept of H space, introduced by Newman (1976) and Penrose 
(1976), has been used to study the problems we are concerned with in this paper (see 
Ludvigsen (1978) and references therein). 

In the sequel we describe a method capable of dealing with a wide variety of types of 
motion, in the linear approximation. It entails firstly expanding the Robinson-Traut- 
man form of the line-element about Minkowskian space-time in powers of the (small) 
mass parameter and arriving at the vacuum field equations to be satisfied by the 
perturbation of the metric from Minkowskian space-time. This is carried out in § 2 .  We 
also quote in § 2 a lemma on gauge transformations which we require for the integration 
of the linearised field equations in 0 4. We review, in § 3 ,  a geometrical construction of 
the relevant form for the Minkowskian background line-element mentioned in § 2. This 
form is not new. It appears to have first been obtained by Robinson (1963, private 
communication with the authors in Newman and Unti (1963)).  The Minkowskian 
background contains a time-like world-line on which the perturbed metric is singular; it 
plays the role of the point-like source. In 04 we specialise this world-line to have 
uniform acceleration, and this enables us to solve the differential equations outlined in 
§ 2. We determine functions of integration by the requirement that we eliminate 
quantities which give rise to singularities in the field (Riemann tensor) of the particle 
along future null-rays emanating from the source world-line in the background 
Minkowskian space-time. We differ from previous work on this problem in that we are 
specifying the motion and seeking the field, whereas the contrary has been the case 
previously (cf Newman and Posadas 1969, Robinson and Robinson 1972, Ludvigsen 
1978). These authors have incorporated additional assumptions, for one does not 
expect, in a linear field theory, to be able to extract the motion of the sources from the 
field equations alone. Finally, in § 5 we compare our results with the exact Levi-Civita 
(1918) solution, in the linear approximation. 

2. Linearisation 

We begin with the Robinson-Trautman form for the line-element, 

ds2 = 2r2P-2 d l  df-  2 dr  d u  - h du2, (2.1) 

where l, f a re  complex coordinates (the bar indicating complex conjugation), and r and 
U are real coordinates. The function P is independent of r, while the function h depends 
on all four coordinates. Einstein’s vacuum field equations imply (see Robinson and 
Trautman 1962) 

h = K - 2 Hi  - 2m/r, ( 2 . 2 ~ )  

K = A In P ( A  = 2p2  a2/ayal), (2.2b) 

H = a(ln P)/au, (2 .2c)  

iAK = -3Hm, (2.2d)  

where we have chosen m to be a constant without loss of generality. The constant m 
will be taken to be the mass of the linearised source (although it does not in general 
admit of such an interpretation in the exact theory). We shall assume that m is small (we 
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write? m = 01) and expand the function P as 

P = r+r+ 0 2 ,  
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(2.3)  

where P= On, n = 0 , 1 , 2 ,  . . . . We shall find it more convenient to write 
n 

P = e 1  + Q) + 0 2 ,  (2 .4)  
0 

where Q = O1. Then 

H = H+H+02, 
0 1  

( 2 . 5 ~ )  

H= aQ/ac, (2.56) 

K=l$+$+02,  ( 2 5 )  

A = 2 p 2  a 2 / a i a c  (2 .5d)  l$= $ In 

?= a(ln ?lac,  1 

0 0  
K = AQ + 2KQ, 
1 0  0 

If m = 0, then only the terms with a subscript zero remain, and we shall take them, 
namely P, H, K, to have the values necessary to make (2 .1)  the line-element of 
Minkowskian space-time (see 3: 3 for these values). Then, in particular, we will find 
that K= 1 ,  and hence ( 2 . 2 4  becomes 

0 0 0  

0 

AK= 0 1  -12Hm 0 + O z .  (2.6)  

Having specified the source world-line r = 0 in the background Minkowskian 
space-time, we shall have at our disposal the functions P, H, Kfrom which we obtain K 
using (2 .6) ,  and thence Q using (2 .5d) ,  and thence ?by (2 .56) ,  the error in each case 
being Oz. Substituting these into (2 .4) ,  ( 2 . 5 ~ )  and ( 2 . 5 ~ )  we will then have a knowledge 
of the line-element (2 .1)  in the linear approximation, i.e. with an O2 error. In carrying 
out this integration programme certain functions of integration will occur. We shall find 
the following lemma useful in dealing with them. We use the notation of Newman and 
Penrose (1962) for the tetrad components of the Riemann tensor. 

Lemma. The linearised vacuum field equations (2 .6) ,  (2 .5d)  and (2 .56)  and the 
tetrad components (A = 0, 1 , 2 , 3 , 4 )  of the corresponding linearised Riemann 
tensor are left invariant by the 'gauge transformation'. 

0 0 0  1 

H + H + ~ A + B ,  K + K + A  (2 .7)  
1 1  1 1  

Q + Q + $ A w + B ( ~ ,  i , f ~  

(the 'dot' indicating differentiation with respect to CT) i f  

$ B + 2 B = 0 ,  ( 2 . 8 ~ )  

(2 .86)  a2B/aiaa + 2Bf2 a y a i ) / a y  = 0. 

This result is easily established by direct computation. 

t We are using units for which c = G = 1. Hence strictly speaking we should have a parameter 1 (say), having 
the dimensions of length, so that mi-' = 01. In the sequel we shall have a source with uniform acceleration a 
and hence we would choose I = a- ' .  



1054 P A  Hogan and M Imaeda 

3. The background metric 

Let X i  ( i  = 1 , 2 , 3 , 4 )  be rectangular Cartesian coordinates in the background 
Minkowskian space-time. Let X i  = x i ( u )  be a time-like world-line C in this space-time 
with U proper-time along it. Let P ( X )  be a current event in the space-time, and let Q(x)  
be the unique event of intersection of the past null-cone with vertex P and the 
world-line (see figure 1). Let A '  = dxi/dm be the tangent or four-velocity at Q, and let 
[ ' = X i - x i ( m ) ;  thenA'Ai=-l andt '&=O,  andif 

r = -~ ' t 'a  0,  ( 3 . 1 )  
then r is the 'retarded distance', defined by Synge (1970), of P from the world-line C. It 
is zero if and only if P lies on C. Take p ' = dh '/du to be the four-acceleration of C, and 
then A 'pi = 0. The construction above raises U, A ', p i  to the status of fields on 
Minkowskian space-time via the definitions u ( X )  = u ( x ) ,  while A I ,  CL ' are postulated to 
be parallel transported along the null-line joining Q ( x )  to P ( x ) .  One can then calculate 
the following derivatives (see Synge 1970),  the comma denoting partial differentiation 
with respect to X i ,  

u , ~  = - r - ' l j ,  A .  b1 . = - r - ' @ . ~ .  I 1 9  p .  1.1 . = -r- 'v , t .  1 I t  

( v i  = dp'/du), 6. 1.1 = v" I1 + r Y I A i t j ,  r , j  = - A j  + Bt,, (3 .2 )  

where vij is the metric tensor of Minkowskian space-time, and B = r - ' ( l  +pi&).  From 
these equations one easily proves that 

dk'/du = (pikj)ki, ( 3 . 3 )  
where k' = r-'['.  Now k' is tangent to the generators of the future-directed null-cones 
emanating from every event of C. We can choose r as parameter along these 'rays', i.e. 
write k '  = ax'/ar, then it follows from (3 .2 )  that r is an affine parameter along the rays, 
and the rays are, as one expects, geodesic, shear-free, twist-free and expanding, with 
expansion r-' .  Since CL', k' are both parallel propagated along the null-rays, the scalar 

I 

Figure 1. The retarded distance r of P from C. The event 0 is the origin of proper-time n 
along C. 
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product p 'ki is independent of r. Hence if f =  ga, [, c), where f ;  [ are two complex 
coordinates, yet to be defined, then we may write 

(3.4) -k ik i  = a(ln P)/au = H. 
0 0 

Then integrating (3.3) component by component we find that 

k' = r15'(l, [I, P= -Ail'. (3.5) 

The second equation here follows from (3.1) by dividing by r. At an event U = uo (say) 
on the world-line C choose A '  = st, i.e. A '  is the time-axis at a = ao; then, by (3.5), 
bearing in mind that 5' is a null-vector, we have 

l4 = -54 = p o ,  5, a, 4 x m  = ? b o ,  5, a, (3.6) 

where a = 1, 2, 3. Hence P-'la is a unit three-vector in the three-flat orthogonal to A '  
at a = uo. We may choose to parametrise it in the usual way with polar angles e,+ with 
respect to the Cartesian basis of the three-flat, or, equivalently, we may use the complex 
coordinate 5 = J 2  eld tanie and its complex conjugate In this case we find, if in 
addition we choose (without loss of generality) P(a0, 5, f )  = 1 +ill, that, for any value of 
U, 

k ' = P '[ ( 1 /A)( I +  f )  S + ( 1 /i&) (5 - [)Si + ( 1 - $l[)& + ( 1 + ill)s; I, ( 3 . 7 ~ )  

f = :( cr, 1; f )  = A 4( 1 + ill) - A 3( 1 - ilf) - (l /&)(A ' - i A  ') - (U&) (A + i A  '), (3.7b) 

using (3.5). This result appears to have been first found by Robinson (1963, private 
communication with the authors in Newman and Unti (1963)). 

0 

0 

0 

From the above equations we have 

X '  =XI( (+)  + r r l l ' .  (3.8) 

If, in the manner of Newman and Unti (1963), we regard this as a coordinate 
transformation from the coordinates X '  to the coordinates f ;  r, a, then a straightfor- 
ward but tedious calculation reveals 

ql, d X ' d X ' = 2 r 2 P 2 d ( d f - 2 d r  0 da - (1 -2Hr )da2 ,  0 (3.9) 

where P= nu, 5, f )  is given by (3.76), and v i s  given by (3.4). One can check, e.g. by 
calculating the Riemann tensor, that this is the line-element of Minkowskian space- 
time. 

Comparison of (3.9) with (2.1) shows that the two line-elements coincide when 
P =:and h = 1 - 2F. One can easily show that, with :given by (3.76), $ In P= 1, and 
so Fgiven by ( 2 . 5 4  is unity. We shall henceforth regard :and vgiven  in this section 
and P and H of Q 2 as synonymous. 

0 0  

0 

0 0 

4. Uniform acceleration 

We here specialise the world-line C to have the equations 

x 3  = a-' cosh aa, x 4  = a-lsinh au, (4.1) 
1 2  x = x  =o,  
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where a is a constant. In the background Minkowskian space-time this is the history of 
a particle having constant four-acceleration, i.e. pipi = a', moving along the X3 axis. 

H= a ( t l f -  k : ) / ( ? i l f +  k;), (4.2) 
BY (3.7) 

P =  0 k 1 ( $ l f +  k;), 0 

where 

kl = A + A 4  = eau, k2  = = -e-au I (4.3) 

and klk2 = -1. Of the ten possible Killing vectors of the background space-time, one is 
clearly singled out here, namely, rotations about the X 3  axis or those transformations 
generated by the vector field. 

i ( l  a l a r  - f ab[), (4.4) 

which is easily seen to be a/a#J, where 5 = JZ ei' tan le. It is reasonable to require that 
this symmetry be found in the space-time composed of the Minkowskian background 
and the small first-order perturbation. We guarantee this by requiring functions to 
depend on l and f i n  the combination lr as in (4.2). It is then convenient to introduce, 
in place of [.f, the new variable 

$= (4l.f - k )/ (kf+ k ; ). (4.5) 

In terms of this we may rewrite (2.6) as 

a[(i - & a ~ / a t ] / a g =  -12mat+02. 
0 1 0 0  0 

This is easily integrated to give 

K =  6ma[-A(a) + a(m)$  ln[(l + 5)/(1- d] + 0 2 ,  
1 0 0 0 

(4.6) 

(4.7) 

where A, a are functions of integration; they are here the coefficients of 1 = 0 Legendre 
functions of the first and second kind. It is convenient at this stage to examine the effect 
of these two terms on the tetrad components of the linearised Riemann tensor. We 
have, in general, 

*o = 0 2 ,  *1= 0 2 ,  +2 = -m/r3  + 02, 

1 1  f a $  * - - - - - + 0 2 ,  
3 - 2  r2  P a t  

0 0  

On substituting (4.7) into +b3 we find 

(4.8) 

(4.9) 

This expression is not only singular at r = 0, as we would expect of the field of a point 
particle, but it is also singular when t= 21. In the background Minkowskian space- 

0 
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time r = 0 is, of course, the uniformly accelerated world-line C. However, by (3.4), (4.2) 
and (4.5), ,f= r t l  corresponds, in the background space-time, to a pair of generators k’ 
of the fut2re null-cone at each event on C for which 

plk l  =+a. (4.10) 

Thus, as well as being singular on C, 4 3  is also singular on a pair of diametrically 
opposed future-directed null-rays at each event on C .  Alternatively ,f = -1 corresponds 
to lr= 0 or e = 0, while ,f= +1 corresponds to [r+ CO or 6 = r, for each fixed value of a 
(on each future null-cone on C). This is not the type of singularity structure one expects 
of the field of a simple pole particle, and we exclude it by taking a = 0 in (4.7). As a 
result of this, the first term in the expression for 44 (cf (4.8)) vanishes. The second of 
(2.5d) may be now written 

a[(l -g)aQ/a(]/d(+2Q = 6 m a ( - A ( a ) + Q ~ .  (4.11) 

0 

0 

0 0 0  0 

This is integrated in a standard way (see Bateman 1918, p 71) to give 

Q = - m a t l n ( l -  e) - $A(a)  - B(v ,  6) + 0 2 ,  

B  PI(^+ ~ ( a ) Q i ( $  (4.12) 

where PI(& Q1( , f )  are the I =  1 Legendre functions of the first and second kind 
respective&, and b(a),  y ( a )  are functions of integration. Then H i s  calculated by the 
second of (2.56) using &= a(1  -g). We then calculate 44 given by (4.8) and find 

0 0 0 

0 

1 

0 0 

6 m a 2 f 2  2 
-- -+- -+41-g)-2+02. 0 

r P’ r p  
(4.13) 

0 0 

Both terms are singular on r = 0. The second term is also singular when r=  ztl unless 
y = 0. Since, as we have seen, t= i l  is an unacceptable singularity in the field of a 
simple pole particle, we choose $ = 0. Hence the tetrad components of the linearised 
Riemann tensor are finally given by 

0 

*o = * 1 =  0 2 ,  42 = -m/r3  + 02, 

(4.14) 

These are only singular on r = 0 and, in addition, 

2$: - 34244 = 0 3 ,  (4.15) 

and so the linearised field of the particle is Petrov type D. We notice that the functions 
of integration remaining, A ( v ) ,  @(a),  y, do not appear in (4.14). It is not surprising then 
that they can be removed by a guage transformation. The precise gauge transformation 
is given by (2.7). Clearly B(a,  8 given by (4.12) satisfies ( 2 . 8 ~ ) .  It also satisfies (2.86) 
provided i /  = 0. 

The ‘directional’ singularities which we have encountered in this section are also 
encountered, under a different guise, in the treatment of this problem by Robinson and 
Robinson (1972). 

0 
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We note that, as a + fa, f becomes infinite for either sign of a. Hence in the 
infinite past or infinite future the only non-vanishing (modulo and O2 error) tetrad 
component of the Riemann tensor is = - ~ r - ~ .  Also the world-line C of the source 
becomes null in this limit, since the four-velocity components become finite. Hence 
the field of the particle in the infinite past or infinite future resembles a Robinson- 
Trautman dS space with k = 0 (in their classification). In a certain sense such a solution 
represents the gravitational field of a particle travelling with the speed of light (see 
Hogan 1974). We also, of course, recover the linearised Schwarzschild solution from 
our results by putting a = 0. This is a dS space, but with k = 1. 

5. Comparison with exact solution 

We found in § 4 that the linearised field of a uniformly accelerated particle is described 
by the line-element (2.1) with 

P =  -2k2(1 -r)-'[1-mat1n(l-r')]+02, 
0 0 0 

(5.1) 

K = 1 + 6ma5+ 02, 
0 

with tgiven by (4.5). We note that, although P here is singular on t= *l ,  the field $A is 
singular only on r = 0. The exact Levi-Civita (1918) vacuum solution can be written in 
the form (see Kinnersley and Walker 1970) 

0 0 

d s 2 = r z ( G - ' d t 2 + G  d q 2 ) - 2 a r 2 d a d t - 2 d r d a - c  da2 ,  ( 5 . 2 ~ )  

where 

G = 1 - t 2 - 2 m a t 3  (5.26) 

c = 1+6mat-2ar(t+3mat2)-a2r2(1-t2-2ma[3)-2mr-1. ( 5 . 2 ~ )  

The linearised form of this is 

ds2 = r2(1 - &[1- 2mat3/(  1 - t2)][(b d[ - a da)' + d ~ * ]  - 2 dr d a  - h d a 2  + 02, 
( 5 . 3 ~ )  

where 

b =(1-~2)- ' [1+2mat3/( l - .$2)] ,  

h = 1+6mat-2ar(Z.+3mat2) -2mr- ' .  

If one makes the transformation 

T = -+i In(r[-'), 

(5.36) 

(5.3c) 

with tgiven by (4.3,  one finds that ( 5 . 3 ~ )  takes the form (2.1) with P, H and K given by 

(5.1). Hence our approach leads to the linearised version of the exact Levi-Civita 
solution of Einstein's vacuum field equations for a uniformly accelerated mass. 

0 
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The procedure for generalisation is now clear. The situation described in 90 2 and 3 
is quite general. One begins solving the linearised field equations (2.6),  ( 2 . 5 4  and 
(2.5b) once the world-line C in the background Minkowskian space-time has been 
specified. One may not, however, always have sufficient functions of integration at 
one’s disposal to remove all of the ‘directional’ singularities that may crop up. Robinson 
and Robinson (1972) have given conditions which have the effect that only the case of 
uniform acceleration is free of directional singularities. A ‘run-away’ uncharged source 
(see Hogan and Imaeda 1979) is an example in which one can remove one or other but 
not both of the directional singularities on each future null-cone on C. 

The question of what provides the acceleration of the particle is a difficult one. 
Kinnersley and Walker (1970) have shown that in the exact solution the two-surfaces 

r = constant, (+ = constant, possess conical singularities at the north or south poles. 
They conjecture that these are related to the fact that one does not take account of an 
external field to drive the particle. Recently Ernst (1978) has suggested how one might 
append an external gravitational field and remove the conical singularity. The approx- 
imate solution we have described in this paper also has such a conical singularity. 
Problems concerning the physical interpretation of this are discussed in detail by us in a 
forthcoming paper. 
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